MATH 4030 Tutorial. 28/9/23 Fexandre in 92 lecture of a regular surface theof Def a surface SSR³ is connected if any two points on S can be joined by a continuous clause in convected. x Hyperbolond of 2 sheets. RI: If f:S > R is a nonzers contrious function on a connected surface S, them f does not change sign m.S. Pf: let p, q e S, s. e. f(p)>0, f(q)<0, Sice S is connected, Z ets curve $\alpha : [0, (1 -) \le r : \alpha(0) = p, \alpha(1) = q.$ Consider $f \circ \alpha : [0, i] \rightarrow \mathbb{R}$ it is cts b/c. α , fare ets

$for(0) = f(\alpha(0)) = f(b) > 0$
$f \circ \alpha(\iota) = f(q) < 0,$
By intermediate value-them, $\exists c \in [0,1]$ r.t. $f \circ \alpha(c) = 0$.
=) $f=0$ at $\alpha(c)\in S$, S
$\frac{1}{1} + \frac{1}{1} + \frac{1}$
Q2: Show $f(x, y, z) = z^2$ has 0 not R regular value of f , but $f^{-1}(0)$ is a regular surface.
a reguler surface.
Pf: Clearly f-'(0) is the Xy plane.
$\frac{\partial f}{\partial x} = 0$, $\frac{\partial f}{\partial y} = 0$, $\frac{\partial f}{\partial z} = 2z$. =) $\frac{\partial f}{\partial y}$ volumbles est (0,0,0) =) $\frac{\partial f}{\partial x}$ (0,0,0)
=) O is a vrite cerl pt. of f
=) O is a vrite cerl pt. of f and f(0)=0 is not a requirer value of f.
Vulle of t

Problem abonee: multiplicity 2. // Kul/)	
f(x,y,z) = z.	
closes not here 0 as a critical value since $f(0) = 0$, $\frac{1}{32} = 1$, so $clf(0) \neq 0$	
QZ: Show that the torus T, querated by rotating a circle of radius r about an axis at fixed distance a>r is a regular runface. PE: let C be the circle of radius r, whole in the yz plane. Z C is given by the equation $(y-a)^2 + z^2 = r^2$ Rotating about Z axis gives theat points on T	

Satisfy: $Z^2 + (\sqrt{x^2+y^2} - \alpha)^2 = r^2$ Let $f(x,y,z) = z^2 + (\sqrt{x^2+y^2} - a)^2$. So $T = f'(r^2)$, so $T = \sqrt{x^2}$, r^2 is a regular value of f. $\frac{\partial f}{\partial x} = \frac{2(\sqrt{x^2+y^2} - a)}{\sqrt{z}(x^2+y^2)^2} \cdot \frac{2x}{2x} = \frac{2x(\sqrt{x^2+y^2} - a)}{\sqrt{x^2+y^2}}$ $\frac{\partial f}{\partial y} = \frac{2y(\sqrt{x}+y^2-a)}{\sqrt{x}+y^2}, \quad \frac{\partial f}{\partial z} = 2z.$ f is differentiable as long by $(x,y) \neq (0,0)$. and df vanishes only when 2=0, x=0=4 Z=0, JX+yz=a. Snice a>r, none of these points are in f⁻¹(rz)

$f(0, a \sin \theta, a \cos \theta) = 0^2 + (\sqrt{a^2 \sin^2 \theta + a^2 \cos^2 \theta} - a)^2 = 0 \neq r^2,$ $\theta \in [0, 2\pi)$
50 r² is a regular value of f.
Alternatively, parcon, T by
X(u,v) = ((rcosu+a)cosv, (rcosu+a)sinv, rsinn)
$0 < u < 2\pi$, $0 < v < 2\pi$.
and show that we can cover T by coord. charts and DX is smooth
2) dX is full-route
3) X 73 a homeomorphism between T and R ² .
The tones is an example of a surface of revolution.

· · · ·	· ·	other co	voniple:	cotenoid.	$\int \int \mathcal{F}$	catenany	. .
• • •				· · · · · · · · · ·	Tel a		
• • •	• •						
· · ·			· · · · · · ·	Cylinder			
						· · · · · · · · · · ·	
	• •						
	l	hese lure	prien by	the poneum.	· · · · · · · · · · · ·		
· · ·	•••	× ((u,v) = ((f(u) cosv, f	(u) smv, g(v)	· · · · · · · · · · · ·	
• • •	• •						
				•••••		,	
••••	• •		· · · · · · ·				
· · · ·	· ·		· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·			· ·	
			· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·		