$28 / 9 / 23$
MA Tr 4030 Tutorial.

Example in lecture of a regular surface the is not connected.

Hyperboloid of 2 sheets:

Def: a surface $S \subseteq \mathbb{R}^{3}$ is connected if any this points on S can be jonied by a contuion cause m S.

Q1: If $f: S \rightarrow \mathbb{R}$ is a nonzers contious flection on a connected surface S, then f does not changes sign on S.
Pf: let $p, q \in S$, st, $f(p)>b, f(q)<0$, Spice S is connected, \exists cts anne $\alpha:[0,1] \rightarrow S$ r.t. $\alpha(0)=p, \alpha(1)=q$.
Consider $f \circ \alpha:[0,1] \rightarrow \mathbb{R}$ it is cts $b / c, \alpha, f$ are cts.

$$
\begin{aligned}
& f \circ \alpha(0)=f(\alpha(0))=f(p)>0 \\
& f \circ \alpha(1)=f(q)<0
\end{aligned}
$$

By intermediate value them, $\exists c \in[0,1]$ s.t. $f \circ \alpha(c)=0$.

$$
\left.\Rightarrow f=0 \text { at } \alpha(c) \in S_{1}\right\}_{/ c}
$$

Q2: Show $f(x, y, z)=z^{2}$ has 0 not a regular value of f, but $f^{-1}(0)$ is a regular surface.
If: Cleanly $f^{-1}(0)$ is the $x y$ plane.

Problem above multiplicity 2.

$$
f(x, y, z)=z
$$

does not heme 0 as a critical value suice $f(0)=0, \frac{\partial f}{\partial z} \equiv 1$, so $d f(0) \neq 0$.

Q3: Show the at the torus τ, generated by rotating circle of radius r about an axis ut fixed distance $a>r$ is a regular surface.
If: let C be the circle of radius r, wLog in the ez plane. z_{\uparrow} C is green by the equation

$$
(y-a)^{2}+z^{2}=r^{2}
$$

Rotatiy about z axis gives that point on T

satisfy: $z^{2}+\left(\sqrt{x^{2}+y^{2}}-a\right)^{2}=r^{2}$
Let $f(x, y, z)=z^{2}+\left(\sqrt{x^{2}+y^{2}}-a\right)^{2}$. Se $\tau=f^{-1}\left(\sigma^{2}\right)$,
so I uTs, r^{2} is a regular value of f.

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=\nsim\left(\sqrt{x^{2}+y^{2}}-a\right) / \frac{x}{2}\left(x^{2}+y^{2}\right)^{-\frac{y}{2}} \cdot 2 x=\frac{\left.2 x \sqrt{x^{2}+y^{2}}-a\right)}{\sqrt{x^{2}+y^{2}}} \\
& \frac{\partial f}{\partial y}=\frac{2 y\left(\sqrt{x^{2}+y^{2}}-a\right)}{\sqrt{x^{2}+y^{2}}}, \quad \frac{\partial f}{\partial z}=2 z
\end{aligned}
$$

f is differentiable as long as $(x, y) \neq(0,0)$.
and off vanishes only when

$$
\begin{aligned}
& z=0, x=0=y \\
& z=0, \sqrt{x^{2}+y^{2}}=a .
\end{aligned}
$$

Since $a>r$, hone of the point are in $f^{-1}\left(r^{2}\right)$

$$
\begin{gathered}
f(0, a \sin \partial, a \cos \theta)=0^{2}+\left(\sqrt{a^{2} \sin ^{2} \partial+a^{2} \cos ^{2} \theta}-a\right)^{2}=0 \neq r^{2} \\
\theta \in[0,2 \pi)
\end{gathered}
$$

So r^{2} is a recular value of f.
alternaticely, param. T by

$$
\begin{aligned}
X(u, v)= & ((r \cos u+a) \cos v,(r \cos u+u) \sin v, r \sin u) \\
& 0<u<2 \pi, \quad 0<v<2 \pi .
\end{aligned}
$$

and show theot we can coner τ by coord, charts and

1) X is smooth
2) $d x$ is full-rouk
3) X is a homeomaphism betven τ ad $\mathbb{R}^{?}$.

The tomes is an example of a surfoce of revdution.
other examples: catenoid.

$$
\text { cylinder } \mid 1
$$

These are given by the ponam.

$$
X(u, v)=(f(u) \cos v, f(u) \sin v, g(v))
$$

